More than 30 minutes to download less than 50Kb

I’m downloading some data from ERA5 and it’s taking me so much time, I’d like to know if there’s someone who can explain to me why all this time to download a 45.5Kb data, or if I’m doing anything wrong or that may cause this delay to download my data.

# Dicionário com as coordenadas para cada sigla de capital
capitais = {
    # 'ac': [-9.97, -67.81, -9.98, -67.80],    # Rio Branco
    # 'al': [-9.65, -35.73, -9.66, -35.72],    # Maceió
    # 'ap': [0.03, -51.05, 0.02, -51.04],      # Macapá
    'am': [-3.11, -60.02, -3.12, -60.01],    # Manaus
    'ba': [-12.97, -38.50, -12.98, -38.49],  # Salvador
    'ce': [-3.72, -38.54, -3.73, -38.53],    # Fortaleza
    'df': [-15.78, -47.93, -15.79, -47.92],  # Brasília
    'es': [-20.32, -40.34, -20.33, -40.33],  # Vitória
    'go': [-16.68, -49.26, -16.69, -49.25],  # Goiânia
    'ma': [-2.53, -44.30, -2.54, -44.29],    # São Luís
    'mt': [-15.60, -56.10, -15.61, -56.09],  # Cuiabá
    'ms': [-20.47, -54.61, -20.48, -54.60],  # Campo Grande
    'mg': [-19.92, -43.94, -19.93, -43.93],  # Belo Horizonte
    'pa': [-1.46, -48.49, -1.47, -48.48],    # Belém
    'pb': [-7.12, -34.88, -7.13, -34.87],    # João Pessoa
    'pr': [-25.43, -49.27, -25.44, -49.26],  # Curitiba
    'pe': [-8.05, -34.88, -8.06, -34.87],    # Recife
    'pi': [-5.09, -42.80, -5.10, -42.79],    # Teresina
    'rj': [-22.91, -43.17, -22.92, -43.16],  # Rio de Janeiro
    'rn': [-5.79, -35.21, -5.80, -35.20],    # Natal
    'rs': [-30.03, -51.23, -30.04, -51.22],  # Porto Alegre
    'ro': [-8.76, -63.90, -8.77, -63.89],    # Porto Velho
    'rr': [2.82, -60.67, 2.81, -60.66],      # Boa Vista
    'sc': [-27.60, -48.55, -27.61, -48.54],  # Florianópolis
    'sp': [-23.55, -46.63, -23.56, -46.62],  # São Paulo
    'se': [-10.91, -37.07, -10.92, -37.06],  # Aracaju
    'to': [-10.18, -48.33, -10.19, -48.32]   # Palmas
}

# Cria pares de anos
anos = ['2000', '2001', '2002', '2003', '2004', '2005', '2006', '2007', '2008', '2009',
        '2010', '2011', '2012', '2013', '2014', '2015', '2016', '2017', '2018', '2019',
        '2020', '2021', '2022', '2023']

pares_anos = [anos[i:i + 2] for i in range(0, len(anos), 2)]

# Instancia o cliente da API
c = cdsapi.Client()

# Itera sobre as siglas e suas respectivas coordenadas
for sigla, area in capitais.items():
    # Itera sobre os pares de anos para baixar os dados
    for i, par in enumerate(pares_anos, 1):
        c.retrieve(
            'reanalysis-era5-single-levels',
            {
                'product_type': 'reanalysis',
                'format': 'netcdf',
                'variable': [
                    '2m_temperature',
                    'maximum_2m_temperature_since_previous_post_processing',
                    'minimum_2m_temperature_since_previous_post_processing',
                ],
                'year': par,
                'month': [
                    '01', '02', '03', '04', '05', '06',
                    '07', '08', '09', '10', '11', '12',
                ],
                'day': [
                    '01', '02', '03', '04', '05', '06',
                    '07', '08', '09', '10', '11', '12',
                    '13', '14', '15', '16', '17', '18',
                    '19', '20', '21', '22', '23', '24',
                    '25', '26', '27', '28', '29', '30',
                    '31',
                ],
                'time': ['07:00', '15:00',
                    '16:00', '17:00', '18:00', '19:00',
                ],
                'area': area,
            },
            f'/content/gdrive/MyDrive/Trabalhando dado/inputs/meteo/nc_pontuais/{sigla}_{i}.nc'
        )

I wrote to the support recently and it seems that there’s a problem.
I have much difficulty too since a few weeks …

From their mail :
“There is an ongoing issue with the queueing on CDS-Beta,”

1 Like

You’re looping over areas, that will be pretty inefficient I think. In general, you want to loop over months (same tape), and make one request for as much data as possible, so in your case potentially requesting the whole Brazil area.

This was my first attempt, but when I take the whole Brazil area I can’t select all the
I need because the data becomes very large, unfortunately I wouldn’ have enough storage